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1 Introduction

Category theory has proven to be an effective tool for describing a variety of math-

ematical structures from topological to algebraic to logical ones. Moreover, topos

theory can be used to construct enough of set theory within category theory. Thus,

some category theorists have claimed that category theory can provide an alternative

conceptual framework for understanding mathematics. In particular, Steve Awodey

[1] suggests that philosophers use category theory in order to clarify the notion of

mathematical structure.

On the other hand, Geoffrey Hellman [7], a philosophical structuralist, put some

questions to the idea of using category theory as a structuralist framework for math-

ematics. In replying Hellman’s objections, Awodey [2] argues that Hellman, adhering

conventional foundationalism, overlooks an essential feature of mathematical practice,

namely, shcematic and top-down character.

This debate between Awodey and Hellman illustrates well what is at issue in the

philosophy of mathematics, and what obstacles lie in the way of establishing a theory

of meaning acceptable both philosophically and mathematically.

In the following we shall review the debate between Awodey and Hellman, see what

is at issue, and identify what prevents philosophers like Hellman from appreciating

what mathematicians like Awodey suggest. Then we shall draw some morals from

the debate, and propose a way to interpret mathematical language. It stands in sharp

contrast with those considered by philosophers like Hellman in that it is based on a

quite anti-foundationalist view of mathematics. Yet it has contituity with at least

some part of our ordinary language.
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2 The structuralist controversy

One of the major tasks in the philosophy of mathematics is to propose a way of inter-

preting mathematical language. Thus, the question often arises about the references

of such expressions as 0, −1, i, ∅, ω, etc. Although they seem to refer to something,

we cannot directly identify their references in the way that allows everyone to agree

on what they are.

An early structuralist approach to this question was made by Dedekind [5], where

he defined natural numbers as any structure (a triple of a set, a function and an

element) that satisfies certain conditions. However, quite different approaches to

natural numbers were also taken by Cantor, Frege, Russell, and later by Zermelo, von

Neuman, etc. They constructed, in one way or another, objects which behave like

natural numbers out of objects or notions which they thought were at their disposal;

that is, sets or properties (concepts), things which they believed were sufficiently

evident. Set theory was particularly popular, and became regarded as the foundation

of mathematics on which every branch of mathematics is to be built.

Structuralism has gained popularity in the philosophy of mathematics since Paul

Benacerraf [4] raised the question about set-theoretic definitions of natural numbers:

if natural numbers can be defined in several different ways in set theory, which natural

numbers are intended, when we talk about them? The structuralist answer is: “Any-

thing will equally do as long as it shares the structure essential to natural numbers.”

The basic slogans of structuralism are as follows:

• Mathematical objects are only identified by relations in some structure.

• A mathematical theory is not about internal properties of individual objects,

but about relations in the structure expressed by the theory.

• A theorem of a theory states some fact about the common structure of arbitrary

models that satisfy the theory.

Structuralism saves us the trouble of thinking about the essence of mathematical

objects what they really are, etc. Moreover it is obvious that present-day

mathematicians treat mathematical objects structurally. On the other hand, to be

a structuralist means that one inevitably undertakes the task of explaining what a

mathematical structure is. Some philosophers like Shapiro and Hellman explain the

notion of structure basically in terms of model theory. However this seems to bring

about no less complicated problems than their earlier ones: problems of the existence

of, the reference to, the underdeterminacy of a structure, etc.
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Meanwhile, in mathematics, with the development of category theory purely struc-

tural approaches to mathematics flourished. Some see this movement as “revolution”

that will turn over the dominance of set theory as foundational framework for mathe-

matics.1 However, despite the great success of category theory, philosophers of math-

ematics do not seem to pay much attention to it.

It is thus that Awodey [1] suggests that philosophers of mathematics use category

theory if they want to approach mathematics structurally. The reasons for his sug-

gestion are: that the notion of mathematical structure is better clarified by category

theory than by set theory, or any other known method; that using category the-

ory means doing everything structurally; and that category theory makes it possible

to treat a variety of different mathematical structures and notions in a uniform way,

making it easier to see connections among them. In [1], Awodey explains how familier

notions in set theory and logic are derived and connected within topos theory.

However, Hellman [7] objects to the suggestion in favor of his modal structuralism.

Here we will consider two of the questions he raises. One is about what the assertory

axioms are. Hellman distinguishes two kinds of axioms: one is “formal” or “schematic”

and plays only the role of definition, while the other is “assertory” i. e. asserts some

“truth” about something. He thinks that a sufficient account for structuralism must

provide a set of assertoric axioms. For example, set theory has one, while group theory

does not. A set-theoretic axiom, say, “if x ∈ A and x ∈ B then x ∈ A∩B,” expresses

some truth about concrete objects, namely sets, while a group-theoretic axiom such

as “(xy)z = x(yz) for all x, y, z ∈ G” only constitutes a part of the definition of what

a group is. In particular, the axioms of category theory are of this character, and tell

us nothing true of any concrete structure.

Related to the above question is the question about “home address” or about the

mathematical existence. Hellman asks “where do categories come from and where

do they live?” (p. 136) He says that category theory simply does not address this

question. Thus he concludes that category theory is insufficient as a framework for

structuralism. Behind this diagnosis, there is a belief that a sufficient account for

structuralism must answer the following questions2:

1. what primitive notions and background logic are employed?

2. what are the assertory axioms?

1 Cf. Goldblatt [6], §1.3.

2 Cf. Hellman [8], pp. 537f.
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3. are stuructures-as-objects eliminated?

4. how are the mathematical existence of structures and their indefinite extend-

ability explained?

5. how is reference to structures, or epistemic access to structures possible?

which category theory hardly does.

Awodey [2] does not deny Hellman in that category theory does not address these

questions, but retorts that it is the very nature of mathematics: the “schematic” and

“top-down” character. Mathematics has nothing to say about any concrete object in

any absolute fashion, but only in a hypothetical and indeterminate fashion. In other

word, mathematical statements are always of the form “if A(X) then B(X)” leaving

X unspecified and even unquantified. In addition, axioms of mathematics are given

from top down rather than from bottom up. Take group theory for example. We

do not have the whole universe of groups to begin group theory with, and of which

its axioms and theorems are true. Instead, the axioms give a condition under which

anything is qualified as group. And this is the way mathematical practice is usually

carried out.

Of course Hellman would not deny the schematic and top-down character in math-

ematical practice. What he would deny is perhaps the idea of mathematical language

being totally ungrounded, so to speak. This is understandable, since we are accus-

tomed to the time-honored principle called compositionality or the “bottom-up”

principle: the meaning of a complex expression is determined by the meanings of its

components and the configuration in which they are arranged. Therefore, in order

for a statement to be meaningful, each of its components should be meaningful to

begin with. This principle seems too obvious to doubt. Even when a mathemati-

cal statement seems to contain indeterminate components, there must be something

they “really” mean. So the task of the philosophy of mathematics is to find out that

something, and get mathematics grounded on it.

This perhaps is what is at stake in the controversy.

3 The obstacle to reconciliation

We are long accustomed to assuming that a meaningful expression should not leave

any of its component indeterminate. In other words, if an expression contains an inde-

terminate component, then so is the meaning of the whole expression. In particular,
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if the expression is a proposition, its truth-value is indeterminate. But a proposition

without definite truth-value is not a proposition at all!

This line of thought is affected by the concern for “having a homogeneous se-

mantical theory in which semantics for the propositions of mathematics parallel the

semantics for the rest of the language” (Benacerraf [3], p. 403). Benacerraf considers

this concern to be one of the two main motivations for the account of mathematical

truth.3 But he also confesses that he is ‘indulging here the fiction that we have seman-

tics for “the rest of language, ” or, more precisely, that the proponents of the views

that take their impetus from this concern often think of themselves as having such

semantics, at least for philosophically important segments of the language’ (p. 403n).

In addition, Benacerraf says he assumes that “truth conditions for the language (e.

g., English) to which mathematese appears to belong are to be elaborated much along

the lines that Tarski articulated” (p. 410). No doubt “philosophically important seg-

ments of the language” in his fiction is such that we can apply a usual analysis of

terms, function symbols, predicates, logical connectives and quantifiers to them. He

calls such language “referential.” This assumption is not unique to Benacerraf, but

quite common to philosophers of mathematics including Hellman.

I will call “the referentiality assumption” the assumption that mathematical lan-

guage must be interpreted referential as our ordinary language is. It is this assump-

tion (or “fiction”) that I think prevents philosophers like Hellman from appreciating

Awodey’s suggestion. This assumption seems to be so wrong as to be harmful at least

in two respects. For one thing, it disguises the fact that we have no homogeneous

semantical theory even for our ordinary language. In fact, a substantial proportion of

our ordinary language is not referential. I am doubtful whether it is possible to dismiss

it as philosophically unimportant. For another, it is not obvious that mathematical

language must be treated as referential. I will explain these in the next section.

4 How to get rid of the obstacle

In the previous section, we saw that the referentiality assumption is an obstacle in

the way of Hellman accepting categorical structuralism. Thus, we shall try to refute

it in this section.

3 The other is “the concern that the account of mathematical truth mesh with a reasonable

epistemology” (ibid.).
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4.1 Are non-referential segments of language negligible?

What is in the non-referential part of language? We sometimes use language to

establish some institutional facts. Such usage is called “performative,” and indeed

paid much attention to by philosophers of language. We name persons, things and

notions; we make promises, rules and laws; and in particular, we define new terms.

In these cases we use sentences of which it is useless to ask whether they are true or

not, or what is the reference of each of their components. For example, consider a sign

that reads, “If you park here, you are fined $50.” The function of this sentence is not

to report some information about something, but to set out a rule that may be applied

anything that satisfies a certain condition. What truth-value or truth-condition does

this sentence have? What is the reference of “you” here? These questions do not

seem to be sensible to ask.

Focusing on definition, the role of definition is multifold. Sometimes definition

serves as a convenient abbreviation to refer to something. For example, we use “a

brother of mine” instead of saying “a child of a parent of mine who is male and

is different from me.” Sometimes a definition makes clear a subtle idea that has

been unnamed but only vaguely perceived: in the way Horace Walpole invented the

word “serendipity.” Sometimes we use definition to introduce a totally new idea by

combining ideas that is already known. For example, I define the word “chilrent” as

a person who is both a child and a parent of another person. More precisely:

x is called a chilrent of y if and only if x is a child of y and x is a parent

of y.

Then we can use this word and deduce a lot of statements about chilrenthood.

What is important here is that before my definition, the string “chilrent” has no

meaning at all, but it has now become a fully meaningful expression that we can use

in our ordinary discourse.4 I can ask one, “Do you have a chilrent?”, and one will

reply “No.” The pragmatic concern set aside, this coversation is as meaningful as

when I ask one if one has a cousin. In short, definition is a performative speech act

by which a term acquires a new definite meaning for our later use. It makes it an

institutional fact that the term has that particular meaning.

We use language in order to extend or modify language and the environment in

which sentences are evaluated. This is a striking feature of human language. And I

4 In many cases in mathematics, definition gives a new specific meaning to an already existent

term.
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do not regard it to be philosophically unimportant. But if the word “philosophically

important segments” here is to mean, in the first place, something worth the attention

of philosophers of mathematics, we should go on to the next question.

4.2 Must mathematical language be viewed as referential?

In the previous subsection, we saw examples of non-referential segments of language,

and among them is definition. Definition deserves a special attention from us be-

cause it is part of mathematical activity. In fact, definition plays a central role in

mathematics. We simply cannot start mathematics without definition.

As a performative speech act, definition makes an institutional fact, and its truth

is not to be questioned. Hellman argues that mathematics must have some axioms

that are assertory in its foundation. We do not try to refute his argument directly,

but see how if we interpret mathematics otherwise, that is, think of all axioms in

mathematics as merely definitional.

Once we have done away with the idea that some axioms are true of something,

no question will arise if axioms in mathematics contain indeterminate components.

As we saw, it is natural that rules contain indeterminate component. When we see

the sign that reads “if you park here, you are fined $50,” we do not wonder who this

“you” is. Nor do we think that this sentence is quantified, because quantification

needs a fixed range and perhaps that is not intended by this rule. The same holds

of definition. When I defined the word “chilrent” neither a particular person nor a

fixed range was intended. What is more, it does not matter that there exists no one

who satisfies the condition for being chilrent. By this fact, Hellman and some others

would worry that everything can be said of chilrenthood. This happens only when we

interpret the “if” part of the definition truth-functionally. We will discuss this later.

Seeing axioms as definitional makes the situation simple. At least three of five

questions Hellman listed 2, 4 and 5 become irrelevant. This is substantial

gain. What then is the loss? Some may become at a loss what mathematics is

all about. Others may dislike the idea that mathematical truth is all by definition.

However they have not escaped from the referentiality assumption.

Awodey, trying to show difference between his position and old-fashioned “if-then-

ism,” says:

The truth of the consequent statement doesn’t depend on some unknown

or unknowable antecedent conditions; rather it applies only to those cases

specified by the antecedent description. ([2], p. 9)
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Thus, he does not interpret if-then truth-functionally. The antecedent works to pick

up those cases to which the consequent can be applied. If-then in mathematics ex-

presses applicability condition, so to speak. One may be reminded of the Brouwer-

Heyting-Kolmogorov interpretation of if-then. In the BHK interpretation, “if A then

B” means “there is a procedure p that turns any proof x of A into a proof p(x) of

B.” Thus, p is applied only to proofs of A to produce proofs of B, and not anything

else. Note that one need not be an intuitionist or a constructivist to employ the BHK

interpretation of if-then, because a proof x of A or a procedure p can be classical.

Again, this usage of if-then is not marginal in “the rest of language.” If-then that

appears in rules, promises, laws and so on is of this character. One may also recall

that in a programming language, if-then is usually not a Boolean expression but a

command in a special form. For example, the expression if x ̸= 0 then y := y/x

end tells us to let y be y/x if x is not 0, and do nothing otherwise. This is also

a good example of an exception to the principle of compositionality. If x is 0, then

the expression y/x is meaningless. However, the whole expression is still evaluated

normally, and the interpreter does nothing, as expected.

To sum up this section, non-referential segments of language is worth our consid-

eration, to explain mathematics in non-referential terms has several advantages, and

even then continuity with some part of ordinary language is still maintained.

5 conclusion

Given what impact category theory has had on mathematics, logic and computer

science, it is rather surprising that structuralists such as Shapiro, Resnik and Hellman

pay scant attention to category theory. Reviewing the debate between Awodey and

Hellman, we saw that the reason for the scantness can be trace back to the traditional

concern for having homogenious semantical theory for mathematics and the rest of the

language. Behind this concern lie the referentiality assumption that both our ordinary

language and mathematical language are referential. Awodey’s reply to Hellman,

emphasizing the schematic and top-down character of mathematical practice, casts

doubt on this assumption. Thus we tried to show that non-referential aspects of

language is as important, and that viewing mathematics as non-referential has several

advantages.
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